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EXTRE~AL CRITERIA OF TNE STABILITY OF PERTAIN ~OTI~~S* 

1.1. BLEKHMAN and O.Z. MALAKHOVA 

The so-called extremal criteria of the stability of certain types of 
motion were formulated in a number of publications /I, 3, 4, 7-10, 13, 

16, 23-25, 31-34, 36-40, 44/. However, until now, the connection 
between these criteria has not been discussed, nor the problem of the 
possibility of extending them to embrace the wider classes of systems and 
motions considered. In a number of cases it might be found that the 
results of various investigations are contradictory. 

In this connection the present paper combines a comparative survey 
of the work dealing with extremal criteria of stability, with a 
derivation (in cases when it was not already done) of the criteria in 
question in a unique manner, using the Poincare-Lyapunov small-parameter 
method. It should be noted that the same results can be obtained, under 
somewhat different assumptions, 
motions. 

by the method of direct separation of 
Three classes of systems are specified for which the extremal 

criteria of stability have been 
present time. 

successfully established up to the 
The basic results are given in the form of theorems. The 

applications of extremal criteria to the problem of deriving a general 
justification for the tendency for certain classes of weakly connected 
dynamic objects to synchronize, to the problems of designing new 

iV+ikZ,Matem.Mekhan.,54,1,142-16i,1990 
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vibrational devices and technologies, to generalizing the principle of 
selfbalancing of non-equilibrium rotors and the problem of resonances 
(synchronisms) in the motions of celestial objects are discussed. 

1. On the extremal criteria of staLKlity and of dynamic systems that are potential in the 
mean. General assumptions concerning the differential systems studied. All the criteria of 
stability discussed above are characterized by the fact that for the specific systems and their 
classes of motions, a sufficiently smooth function D (q,...,q) of a certain number of par- 
ameters a,, . . ., ak (k < 2% where 2n is the order of the system) can be found such, that the 
stable motions of the given class /13/ correspond, or can correspond, to the minimum (and some- 
times the maximum) points of this function. In other words, in the cases in question we have 
an analogue of the Lagrange-Dirichlet theorem on the stability of equilibrium positions, and 
this presents great advantages during the investigations. It is also essential that the func- 
tion D itself, which we shall call the potential function, as well as the parameters cl,. .,ah., 
can be clearly interpreted in terms of the characteristics of the system and the motions in 
question. In all the criteria under discussion the function D or its "fundamental part" 
represents, in a clearly defined manner, the averaged Lagrangian, Hamiltonian and the force 
function of the system or its part, and the parameters CC,,...,UI; represent the approximate 
or exact values of the generalized coordinates (see below). 

The conditions of existence of a potential function are sufficiently strict, and its 
presence is by no means always established. In this connection we shall consider in Sect.2-4 
three relatively wide and important classes of systems for which the function D was found. 
The basic results are formulated in the form of mathematical assertions which, as a rule, has 
not been done by the authors. Also, in order to clarify the point of the problem we shall 
show, albeit purely schematically, two routes leading to the appearance of a potential function 
D corresponding to two methods of investigation, namely to the Poincare-Lyapunov method and 
the method of averaging. 

As we know, when the Poincare method is applied to the case in which the generating system 
can have a family of periodic or almost periodic solutions depending on the parametersa,,...,a';, 
then the corresponding solutions of the initial systems may correspond to the values of these 
parameters satisfying a certain system of equations 

P, (al, . .1 ah.) = 0 (s = 1, ., k) (1.1) 

where the functions P, are expressed in terms of the right-hand sides of the initial equations 
and of the generating solution (see Sect.2-4). Further, we shall show that when specific 
assumptions are made concerning the form of the solutions of the equations in variations cor- 
responding to the generating system and generating solution /5, 6, 27, 34/, that a specified 
solution of Eq.(l.l) has indeed a corresponding asymptotically stable solution of the initial 
system, provided that all roots x of the algebraic k-the degree equation (6,~ is the Kronecker 
delta) 

IaPi/aUj-_ijxI=O(i,i=1,...,k) (1.2) 

have negative real parts. When we have at least one root with a positive real part, then the 
corresponding solution is unstable, and the case of zero or purely imaginary roots needs 
additional investigation. 

Let us now assume that a function D (a,,...,q) exists, continuous with its first- and 
second-order derivatives and such that the following relations hold: 

aD/aai = -Pi (q, . . ., a:,) (i = 1, _, k) (1.3) 

It then follows from what was said above that D is indeed a potential function. 
Another route by which a potential function may appear characterizes the averaging methods 

/15, 30/. Thus, when the method of direct separation of motions /ll/, resembling asymptotic 
methods, is used, we find that under certain conditions the approximate equations for the "slow" 
variables '%r . . ., ak can be written, in spite of the, generally speaking, non-conservative 
nature of the initial system, in the form 

Eai (T) = -aDlac+ (i = 1, . ., k) 
d a a 

Ecai -zaai’-q 

(4.4) 

T == + j, & aj,, (up . . .( a,) cLj’cc,’ 

& m=1 

where T is the kinetic energy corresponding to slow motions and E is the Euler operator. We 
shall call the dynamic system that allows the formulation of equations of slow motions in the 
form (1.4), the system potential in the mean. Such a description can be justified by the fact 
noted above, that the potential function D is usually obtained as a result of an averaging 
operation. 
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The Thomson-Tate-Chetayev theorems imply that therole of the function D is also main- 
tained when terms corresponding to dissipative forces /20/ occur in Eqs.(l.4). 

In the case when the appropriate equations for the slow variables ala, . . ..al. bl,...,bl(Z< n) 

are written in canonical form 
ai' = -aHlabi, bi’ = aHlaai (i = 1, . . ., 2) (1.5) 

the Hamiltonian function H= H(a,, . . . . a~; b,,...,b,) plays the role of the potential function 

D. However, in this case the stable motions can correspond to strict minima as well as strict 
maxima of the function H. 

It would appear that the first result concerning the extremal criteria of stability 
follows from the classical work of Poincare /35/ who, however, dealt only with conservative 

systems. We shall pause briefly to consider his result. Poincare dealt with equations of 
the form 

zi' = aHlayi, Yi’ = -_$Hlazi (i = 1, . ., 78) (1.6) 

H = Ho (~1. . . ., zn) + pH, (51, . ., z,, YI, . 3 yn) + PHz (a, . ., %r 

Yl. . . .* Yn) + 

where H is a 2n-periodic function of the variables s,,...,z,;Y~,..., y,;~ is a small parameter. 
When p=O, Eqs.(1.6) have the solution 

Zi = ai, yi = Oit + CCi (1.7) 

where ai and cc1 are integration constants and ei are functions of al, . ., %I. 
Let us now assume that at certain values of ai the frequencies ei are multiple o = 211/T, 

i.e. the solution (1.7) is synchronous with frequency w and e1 = -aH,taz, * 0. We shall also 
assume that for appropriate values of ai the Hessian ~cW,/W~ is different from zero. Since 
the problem is selfsimilar, we can write a, = 0. Then, if for certain values of a2- c+*,. . ., 
a,=or,*ai7,laui=O(i=Z,...,n) and 1 a%,laea( #O 

(B, (% ai) = ([HII)) 

then for sufficiently small P#O the initial system (1.6) will have a T-periodic solution 
which transforms, when p=O, to the generating solution (1.7) with parameters ccl = 0, cz* = 

ap*, ..,a, = G*. Here and henceforth the square brackets indicate that the expression within 

them is calculated from the generating solution, and 
T 

<. .> = + s . . . at 
0 

in the case of periodic functions, and 

T 

<. . .) = lim + s . . dl 
T-m 

0 

in the case of almost periodic functions. 
In the course of investigating the stability of the periodic solution in question, 

Poincare showed that the characteristic indices of this solution can be written in the form 
of an expansion in powers of 1/z h=hll/(F+hlP+..., with two characteristic indices always 
equal to zero. 

In particular, when n=2, then the following expression holds for the characeristic 
indices /35/: 

(1.8) 

From Poincare's arguments, based on considering expression (1.8), it follows that the 
motions that are stable in the first approximation will have corresponding minimum or maximum 
points of the function H,. 

The above fragment of the classical work of Poincard is separated from the extremal 
criteria of stability established subsequently by a fairly long period of time. We shall see 
from the survey given below, that it was towards the end of the fifties that papers started 
to appear in which extremal criteria of stability, applicable to more complex, but preferably 
non-conservative systems, were formulated. We note that for many such systems the extremal 
criteria are found to be "stronger". They express the necessary as well as the sufficient 
conditions of Lyapunov stability, i.e. they represent, in fact, the criterion of stability. 
In the case of Hamiltonian systems the corresponding criteria express, generally speaking, 
only the sufficient conditions of stability to a first approximation with respect to the 
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small parameter occurring in the equations in variations. The motion in these cases may be 
Lyapunov stable only when certain additional conditions are satisfied. Such a situation 
occurs, in particular, in the extract from Poincare's work discussed above. The extremal 
criteria do not lose their meaning even in these cases, since they determine the selection of 
the constants of the generating solution to which the stable motions can correspond. 

As regards the nature and smoothness of the functions occurring in the differential 
equations in question, it is sufficient to assume, in order to ensure the validity of all the 
results given below, that these equations can be represented in the form 

Z,' = x, (51, ., 2,. t) + yfs (Zl> .> Gl, tv to 

where the right-hand sides are defined for all real values of t, for values of I_I lying in a 
certain segment l0, ~~1, and for the values of x1,. ., z,, lying within some closed region G of 
variables space. In this region the right-hand sides of the equations are continuous in t, 
and the functions fs can have continuous partial first-order derivatives in z~....,z~. In 
some cases these demands can be relaxed, and the right-hand sides can be either T-periodic or 
almost periodic in t, or they may not depend explicitly on this variable. In the case of 
almost periodic equations we assume that for any fixed u from the segment LO, PO1 and any 
almost periodic z~....,z,. belonging to the region G, the functions Xs(q,...,~,,t) and f,&, 

.,.%,t, P) will also be almost periodic in t. 
All variables and parameters are assumed to be dimensionless. 

2. Systems with selfsynchronizing objects. Integral criteria of stability (extremat 
properties) of synchronous motions. 2.1. Systems with aZmost uniform rotations; setfsynchron- 
ization of 0scitZation generators. The integral criterion of stability was formulated for 
systems with selfsynchronizing mechanical oscillation generators /7/ and proved using the 
Poincare-Lyapunov small-parameter method /8/. In /9/ the criterion is generalized to systems 
with almost uniform rotations, and the corresponding results can be formulated as follows. 

Let us assume that the equations of motion of the system with generalized coordinates 
~~((s= i,...,k) and LLT (1. = 1, . .Y). characterized by the Lagrange function L and non-conservative 
generalized forces Q,, and Q,,, can be written in the form 

I,qps" + k, (q+’ - a,n,w) = pL’3, (s = 1, . . ., k) (2.1) 

&, (L) = Q,, (r= 1,. .,Y) (2.2) 

where I,, k, and o are positive constants, OS = II, n, are positive integers and p>o is 
a small parameter. 

The functions L,QQ*,Q+ and @'s can depend on the generalized coordinates and velocities 
of the system, as well as on the time t. The functions are 2s-periodic in R, and 2a/o- 
periodic in t. Furthermore, the functions QVs,Q,+ and @, can also depend on u, and the func- 
tions & are found from the condition that Eqs.(2.1) are identically equal to the correspond- 
ing group of Lagrange equations of the second kind. We shall call such systems , systems with 
almost uniform rotations, the coordinates 'ps will be called rotational, and ur will be 
called oscillatory coordinates. 

The generating equations corresponding to Eqs.(2.1) have the following family of solutions: 

'pso = OS (n,ot -I- a,) (2.3) 
depending on k arbitrary parameters a,,...,~%. Let the generating equations corresponding to 
Eqs.(2.2) and solution (2.3) have, for any a., an asymptotically stable 2nlo-periodic sol- 
ution ~1~~. Further, let a function B = B(a,,...,a$) exist, called the potential of averaged 
generalized forces and such that 

where, as before, the angle brackets indicate averaging over the period 2nio and the square 
brackets mean that the expression contained within them is also calculated, for P=O, for 
the generating solution. 

Let us denote by A = :\(a,,.. .,c+) = <ILl> the mean value of the Lagrange function of the 
system calculated for the generating solution. 

Under the conditions formulated above the following theorem holds: to every point of the 
coarse minimum of the function 

D = D (al, . . ..c+) = -(A + B) (2.4) 

there corresponds, for sufficiently small values of u a unique,asymptotically stable solution 
of the initial system (2.1), (2.2) transforming, for P= 0, to the generating solution, i.e. 
to a solution of the type 

cps = o,(n,ot + a,) +qs (t, P), UY = UT0 (i) + "r (t? CL) (2.5) 
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where rp. and v,-22nlo are periodic functions of t, vanishing at p=O (we shall call such 

functions synchronous). The absence of a minimum detected by analysing the second-order terms 
of the expansion of the function D in powers of a 6 near the stationary point, indicates the 
instability of the corresponding synchronous solution, and other cases require additional 
investigation. 

Here and henceforth we will use the term "coarse" to describe the strict extremum of the 
function which can be detected by analysing the second-order terms in the expansion of this 
function near the stationary point. 

We will make some additional remarks. 
If L,Q Q 

and tkz.function? t;' 
and @, are analytic functions of generalized coordinates and velocities, 
Q and CD, also depend analytically on the small parameter p, 

solution (2.5) of sy.%ei'(2.1), 
the 

(2.2) will be analytic in n. 
2". In the case of a selfsimilar system the function D will depend only on the differences 

a, - ck, . . ., ak-1 - ah, the assertion made above will refer to the minima in these differences, 
and we shall speak of asymptotic orbital stability. 

3". When aB/aa,< aAl@, and especially when B= const, we can write D = -A, i.e. the 
role of a potential function will be played by the averaged Lagrangian of the system calculated 
for the generating solution and taken with the opposite sign. 

4". The above theorem clearly implies that the conditions for a coarse minimum of the 
function D represent, with the assumptions stated, not only the sufficient conditions of 
stability, but also the "coarsely necessary" conditions in the sense that the absence of a 
minimum determined by analysing the second-order terms in the expansion of the function D 
near the stationary point, indicate the instability of the synchronous solution in question. 

5". If the asymptotic stability of the generating solution uto cannot be established by 
analysing the equation in variations for system (2.2) at p= 0, then in order to obtain the 
sufficient conditions of stability under the conditions of coarse minimum it is necessary to 
incorporate certain additional relations obtained by analysing the higher-order approximations. 
The same situation occurs in the case when system (2.1) is quasiconservative. The conditions 
which follow from the demand of a coarse minimum of D are fundamental in this case also, since 
it is precisely these conditions that determine the choice of the constants a,, . . ., ar, to 
which the stable solutions can correspond. 

6". Let the Lagrange's function of the system be represented in the form 

L = L* + LW + La) 

L(II) = I (n’, . . .> WC’; ‘PI. . ., (Pk) 

Here +j and b,j are constants and L,, f,, Fr and Y are functions of the variables 
listed above, and L,,ji and F, are 2n-periodic functions in cps. Also let 
there are no conservative generalized forces in coordinates ut. 

iQ,* 1~ 0, i.e. 
in the generating approximation. 

Therefore, the corresponding systems are quasilinear and quasiconservative with respect to the 
oscillatory coordinates. In this case the following relations hold 19, lo/: 

auaa, s 0, anlaa, = a 02 (11) _ A(1))/a,+ 

A,= <[LJ>, A(I) = <[L(I)]>, II = <[L(")],, A = ([L], 

and the potential function can be written in the form 

D = A(') _ A(") _ B (2.6) 

Expressions Lg, L(I) and L('I) are called /32/, respectively, the characteristic 
Lagrangians of the synchronizing objects, and the Lagrangians of the systems of active and 
passive linkages between the objects. It is remarkable thatthe quantities A(I) and A(m) 
occur in the expressions for D with opposite signs. In the problem of synchronizing the 
oscillation generators (unbalanced rotors) L, are the Legrangians of the rotors not connected 
with each other, L(1) is the Lagrangian of the elastic solid on a support or of a system of 
elastically coupled solids on which the rotors are mounted, and the term L(~) is governed by 
the presence of direct links between the rotors in the form of elastic and damper elements. 

If L(") = 0, B = const and aAo)lacS > aelaa;, then we can put 
D = L;(r) = <[L(')]> (2.7) 

i.e. the potential function in this case will be a Lagrangian, averaged over a period, of an 
elastic solid on a support or of a system of solids carrying the rotors, and the function L(I) 
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will be determined in the generating approximation Qs', +'. This result considerably simplifies 
the investigation of systems with selfsynchronizing unbalanced rotors and has important 
applications (see Subsections 5.2 and 5.3). 

The results given above can also be arrived at using the method of direct separation of 
motions /lo, ll/. However, when this method is used, apart from the assumptions made above, 
we must assume that the parameter e=f/m is fairly small. The integral criterion of stability 
is obtained in this case from the condition of stability of the stationary solutions a, = a,*, 
. . ., at = at* of the system of equations 

I,a," + k,n,' = a (A + B)l&z, (s = 1,. . ., k) (2.8) 

where, unlike expressions (2.3), the quantities CC, are "slowly varying" functions of time. 
A proof of the integral criterion of stability based on the use of a variational relation, 

was given in /25/. 
In /9, 38, 45, 461 expressions, are given which can be useful in solving specific problems, 

for the averaged Lagrangian of the quasilinear system of supporting bodies in terms of so- 
called harmonic influence coefficients. The modified geometrical formulation of the integral 
criterion of stability given in /23/ is useful in solving a number of problems dealing with 
selfsynchronization of the oscillation generators. 

2.2. Systems of quasiconservative objects, canonica2 systems. The integral criterion of 
stability for a system of weakly coupled quasiconservative objects was obtained in /37/, and 
the expression for the potential function has the form /9, lO/ 

D=-(n+B)o (2.9) 
(T = sign e, (o), e, (w,) = co,-‘dhsldo, (2.10) 

bus is the frequency of an isolated, purely conservative S-th object and h,(o,) is its 
energy constant). 

It is clear that the sign in expression (2.9) is determined by the sign of the 
quantities e, (0). Depending on this sign, Nagayev lists strongly anisochronous objects (e,>O, 
rotating rotors are an example), weakly anisochronous objects (es < 0, point masses rotating 
about a fixed centre under a force of attraction are an example) and isochronous objects (es = 
m, such as linear oscillators for which es does not depend on hs, so that do,ldh,= 0). Formula 
(2.9) holds under the condition that the nature of the isochronicity is the same for all 
objects. 

In the case of systems with quasilinear active linkages when the assumptions concerning 
the nature of the passive linkages are sufficiently general, expression (2.9) can be written 
in the form 

D = (,\ (1) _ ,\w _ B) 0 (2.11) 

Here A(r) and ;iUU are, as in (2.6), the generalized Lagrangians of the systems of 
active and passive linkages calculated in the generating approximation. 

In the problem of the synchronization of quasiconservative objects the conditions of 
stability expressed by the integral criterion are only coarsely necessary (see note 4O 
earlier). The sufficient conditions were obtained in /33, 34, 38/. 

Asymptotic methods and the method of integral manifolds were used to generalize the 
results of /32/ to the case /21/ of so-called incomplete synchronism (the corresponding 
concept was formulated in the same paper). 

Formulas (2.9) and (2.11) refer to the case of essentially anisochronous objects. In 
/32/ it was shown that the corresponding integral criterion of stability can also be 
formulated in the case of almost isochronous objects, which requires a speciai investigation. 
The integral criterion was also proved in /16/ for the case of almost isochronous objects, 
namely quasilinear oscillations. The authors there assume that the Lagrangian of the system 
has the form 

where p>O is a small parameter, and iI is a TI= 2ntw -periodic function of time t. We will 
consider a motion close to resonant: 

0,' - Yj” = 0 (CL), vj = UpjIN (j = I, . . ., IL) 

where Pj (j= f,..., n) and N are positive integers. 
The equations of motion have the form 

(2.13) 



121 

The generating solution of Eqs.(2.13) is 
qro = a, eos Y& + b,/v, sin YJ (r = 1, . ., n) (2.14) 

(+ and br are the initial values of qrO and qro’ respectively), T= 2nNlo -periodic in t. 
Introducing the mean value of the Lagrangian (2.12) along the generating periodic sol- 

ution (2.14) 

T 

A (a, b) = + 
s 

L (6’ (G f” (9, t, IL) dt (2.15) 
0 

the following assertion was made in /lb/: if the function A (a, 5) has a minimum or a maximum 
at the point a, = al=, . . ., a, = a,‘; b, = 0 bl , . . ., b, = b,’ , then the point in question determines the 
periodic solution, stable to a first approximation; other stationary points require a special 
investigation. 

We must note that in accordance with the arguments used in /lb/ the phrase "stable to a 
first approximation" means merely stability to a first approximation with respect to small 
parameter u. In order to solve the problem of stability to a first approximation in the 
usual sense of this term we must, in the present case, investigate the roots of the 
characteristic equation with an accuracy of up to higher orders of u. 

The extremal criterion formulated here with the refinement quoted above can be obtained, 
under certain additional constraints, using Malkin's theorem /27/ of the existence and 
stability of almost periodic (and in particular periodic) solutions of system of equations of 
the form 

ZS' = x, (21, . . ., Sl. t) + pFs (51, . ., 31, t, p) (s = 1, . . . 0 (2.16) 

where X, and F, are almost periodic functions of t, and for any u from the segment (O,p,J and 
arbitrary, almost periodic functions Zj(t) (j = I,..., I) lying in some region G of the space of 
variables z1. . f ., ‘51, the functions X, (x1 (t), . . ., =I (t), tl and F, IsI (t), . ., =I (0, t, pl are also 
almost periodic in t. The assumptions regarding the smoothness of the functions X8 and F, 
were given earlier. 

Malkin's theorem establishes a correspondence between the almost periodic solutions of 
system (2.16) and the almost periodic solutions of the generating system 

For every 
on I, arbitrary 

for which 

zp”’ = x, (qO, . . ., zp, t) (s = 1, . . ., 1) (2.17) 

almost periodic solution of system (2.17) lying in the region G and depending 
parameters a,,..., ccl 

zso = xa” (t, a,, . . ., ad (2.18) 

Ps (a,, . . ., a,J SE ( 5 Fj (x1’, . . ., 
j=x 

ZIO’ t, 0) zj,* (t)) = 0 (2.19) 

and the algebraic I-th degree equation 

1 aP,/aaj - 6,,h 1 = 0 (s, j = 1, . . ., 2) (2.20) 

has no roots with zero real parts, there exists, for sufficiently small u, an almost periodic 
solution of system (2.16) which transforms, for P=O, into the generating solution (2.18). 
This almost periodic solution will be asymptotically stable if all roots of Eq.(2.20) have 
negative real parts; if the real part of at least one root is positive, then the corresponding 
solution will be unstable. 

Here ZjS* are solutions of the system coupled to the system of equations in variations, 
constructed for the generating system (2.17) and generating solution (2.18), and 

(2.21) 

where s,,,,= az8vaa, (s, m = i, . . ., 2) are almost periodic solutions of equations in variations cor- 
responding to system (2.17) and solution (2.18). 

We note that the proof of the theorem formulated above is based on the Krylov and 
Bogolyubov's transformation for almost periodic systems in standard form, and also on 
Bogolyubov's theorem on the correspondence between the solutions of the initial system and the 
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stationary solutions of the first approximation equations in an infinite time interval, and 
on the relation between the stabilities of the solutions in question /15/. In the case of 
periodic systems the proof of the Malkin's theorem is based on the methods of Poincare and 
Lyapunov /27/. If at the same time Eq.(2.20) has no zero roots, conditions (2.19) will be 
necessary and sufficient for periodic solution of system (2.16) to exist, transforming, when 

p= 0, into the generating solution. The periodic solution will be asymptotically stable, 
provided that all roots of Eq.(2.20) have negative real parts. When Eq.(2.20) has purely 
imaginary roots, we can speak only of the stability of periodic solutions of system (2.16) in 
the first approximation. 

Using the above theorem, we put Q= Xj, qj'= Yj(j = I,..., n) * (*The proof given below as 
well as the proofs in Sect.3 and 4 are all due to O.Z. Malakhova.) and write system (2.13) 
in the form 

21' = Yr, Y,’ = --yT% + pF, (2, Y, Y’, t, p) 0. = 13 . . . 4 (2.22) 

where the functions 

(2.23) 

are T= Zn/o-periodic in t. 
When Ir=o, system (2.22) has the family of T= 2nNlo -periodic solutions depending on 

2n arbitrary parameters CQ, . .( a,; b,, . . ., b,: 

CC,.’ = a, cos Y, t + b,v,-’ silr v,t (2.243 

YB = -a,.~~ sin ~,.t f b, cm vTt (r = 1, . . ., n) 

Eqs.(2.19) for determining the parameters of the generating solution will be written as 
follows: 

P&b)&! ~~~+,;,Fj(l*,y~,yn',l,O)dt=O (s = I,..., 2n) (2.25) 
0 I=1 

CA = Bj,COSY& 2;. 9+11= Sj,v, sin *Ggt (2.26) 
* 
'jt7b.s = - Bj,yS1 sin v8t zT+n,a+n = hj, cm vst 

(;=I ,...( n; s--l (..., n) 

Taking relations (2.23), (2.24) and (2.26) into account, we can obtain 

T 

T 
1 ’ a 

pj+,, (a, b) = y s aa. 12 (q”. q*‘. t, 0) dt (j = 1, . .., n) 
cl ’ 

and from this it follows that the solution of system (2.25) 

ax = aI*, . . ., a, = a,‘; b, = b,., .; b, = b,‘. (2.27) 

represents a stationary point of the function n. (a, b). 
In order to study the problem of the existence and stability of a periodic solution of 

system (2.22) becoming, at PL=O, the generating solution (2.24) where a?= a,O, br= b,‘(r= 1. 
. . ., n)* we shall construct the algebraic Eq.(2.20) as follows: 

d2A 
-E--6 it 

aaii ! 

rs rs -ab 
7 s 

a=h a=A =o (2.28) 

aa r s 
-$q - v 

(r = 1, . .( rz; s = 1, . . ., n) 
(the derivatives of the function A(u,b) are calculated at the point (2.27)). For sufficiently 
small u system (2.22) will have a periodic solution transforming, at p= 0, into the generating 
solution, provided that the algebraic equation mentioned above has no zero roots. Eq.(2.28) 
clearly represents the characteristic equation of the system in variations corresponding to 
the solution (2.27) of system 

(II. = -a.ilab,, b; = a;\/aa, (r = 1, . . ., ?z) (2.29) 
Since system (2.29) is Hamiltonian, it follows that the purely imaginary roots of Eq. 

(2.28) will correspond to the stationary points of the function A (a,b), corresponding to 
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positions that are stable to a first approximation. Therefore, the conditions for the 
presence of the coarse minimum or maximum of A(a,b) at some point represents the sufficient 
conditions for the existence of a periodic solution of system (2.13) stable to.a first approxi- 
mation with respect to the small parameter u, and transforming at p= 0 into the generating 
solution (2.14). 

We note that unlike the formulation /lb/ given above, here we have the additional 
requirement of the coarse extremum of the function A(a, b) brought in by the use of Malkin's 
theorem. 

It was stated without proof in /lb/ that the criterion of stability discussed here can 
be extended to the general case of canonical systems with a Hamiltonian function, almost 
periodic in t. 

The principle of the extremal character of resonant (or, using the terminology adopted 
above, of synchronous) motions was proposed as a hypothesis for the problem of plane rotation 
of a celestial object about its centre of mass, moving along an elliptical orbit around a 
centre of attraction /l, 3, 41. 

Let lJ (% t) be the force function of the system where 0 is the angle of deviation of 
the axis of inertia of the body from the radius vector of the orbit. We will introduce the 
time-averaged value of the force function: 

According to the above hypothesis the limit (2.30) exists, and reaches a maximum value 

on the set of initial data eO,eO' corresponding to stable resonant motions. The results of 
a numerical experiment /l/ were used as an argument in support of the hypothesis. 

At a later date a theorem was proved which confirmed, in general terms, the idea that 
synchronous (resonant) motions have extremal properties /2/. A periodic system was 
considered, which is somewhat more general than a canonical system (a system in which the 
phase volume is preserved) and it was shown that the necessary and sufficient condition for 
stable periodic or synchronous motion to exist is that there exists a function K(q) of initial 
values z0 of the phase variables x, with a strict maximum or minimum in these initial values. 
Moreover, the function in question is connected with some function of the phase coordinates 
and time x(z,t) by an integral relation of the form (2.30). The question of determining the 
functions x and K has, however, remained open. We note that according to the above hypo- 
thesis U and <u> will be such functions. 

We also note that the theorem in /2/ agrees with the results of /43/. 
It was stated in /22/ that averaging (2.30) along the exact and, in general,non-degener- 

ate solutions is different from averaging along degenerate solutions (i.e. depending on a 
certain number of parameters) which are discussed in the remaining cases considered above. 
The results of averaging along the degenerate solutions is affected by the choice of the 
averaged function, while in the case of non-degenerate periodic solutions stable in the linear 
approximation we find that for any continuously differentiable periodic function x (2, t) 

and in particular, if K (G) exists and is a continuously differentiable function, then 
K,*'= 0, i.e. z. is a stationary point of the function K(z,). On the other hand, this 
assertion, which was proved in /22/, does not contradict the theorem given in /2/ in which 
only the existence of the function x(z,t) is referred to and according 
only the stationary point of the function x(z,t), but also represents 
point of this function, and the theorem gives the necessary, as well as 
ditions for stable periodic solutions to exist. 

2.3. Systems with quasicyclic coordinates. An integral criterion 
obtained in /39/ for systems with quasicyclic coordinates 

pr' = Qr (r= 1, . . ., m) 
E q,,,+r (U = Q,+, (1. = 1, . . ., R - m) 

L = T (qm+l , . . ., qn: 81 I ., qn') - n (4,+1 I . . ., qn) 

to which x0 is not 
the minimum or maximum 
the sufficient con- 

of stability was 

(2.31) 

(2.32) 

where L is Lagrange's function, PL>O is a small parameter, pt = c3Tlaq,' (r = 1.. . ., m) are the 
quasicyclic momenta, and Qm+r(qm+l, ...,qn;ql',...,q,,n') are the generalized non-conservative forces 
corresponding to the position coordinates and the generalized. The non-conservative forces 
corresponding to the quasicyclic coordinates are assumed to be represented in the form 
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91 = u, 0) + pfr - pb?,’ 
U,(t+2nlo)=U,(t),<U,(t))=O (r=I,...,m) 

where f,, h, are constants and (h,> 0). 
The generating equations corresponding to Eqs.(2.31) have a family of Lnlm-periodic 

solutions depending on m arbitrary constants a,, . .( a,: 

Pvo= a,+ V,(t) (r= 1, . ., m) 

(V,’ = V,, <VT> = 0) 

Let us assumed that the equations 

IR #Jm+,(&) - Q,+,l = 0 (1. = 1, . . ., n - 4 
where 

-$? = (T - 5 PJ,’ I -n 
,=I q,‘=g,‘(p, I.... P,‘;qm+l,....4*:‘lm+~...,q~.) 

is the kinetic Routh potential have, at any a,, . . .I Qln, an asymptotically stable isolated 
2nlo-periodic solution 

D qr+m = btm @,a,, . . . . a,) (r= 1, . . . . n-m) 

and, that the following relations hold: 

(here, as before, the functions 
solution (2.33)). 

With the above assumptions 
small, we have, for every point 

n--m 

g <[Q_+s*]>=o (r=L..., m) 

a corresponding, asymptotically stable periodic solution of system (2.31), (2.32) becoming, 

(2.33) 

(2.34) 

(2.35) 

in the square brackets are calculated using the generating 

we can make the following assertion; when !.I are sufficiently 
of the coarse minimum of the potential function 

(2.36) 

at P=O, a generating solution (2.33), (2.34). 
Here all generalized velocities and position coordinates (but not the quasicyclic ones) 

are periodic. 

3. Systems with kinematic excitation of oscillation (the minimaz criterion of stability). 
The minimax criterion of stability /36/ can be formulated as follows (the formulation given 
here incorporates certain changes, see below*). (*Strizhak T.G. Minimax criterion of stability. 
Preprint No.254, Inst. Electrodinamiki, Akad. Nauk SSSR, Kiev, 1981.) 

Let 

(3.1) 

be the kinetic and potential energy of the system described by n+s generalized coordinates 
Q1.. . ..4n, 111,. .> us. where the coordinates %, . ., us are specified in the form of finite sums 
(p is a small parameter) 

V,#O, V_k = -yk* &j,_r = nj,ks 0 = l/p 

We assume that the viscous friction forces R, (r= 1, . . . . n) corresponding 
91, . . .1 Bn I have the form 

(3.2) 

to the variables 
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where the matrix of the coefficients BP, is positive definite. 
We shall understand by the term quasi-equilibria of a system almost periodic motions of 

the form Q = gp + P$j (et) (j = 1, . ., n), where gj' are constants and ~$1 (at)) =O, i.e. motions 
representing small, high-frequency oscillations near the position Pl = 9% We can also say 
thatthe quasi-equilibriacorrespond to the positions of equilibrium for the slow components 
of the motion (see below). 

In this case the following theorem holds: if at some point ql= qt”,....qn=qnc the function 
(mine. L (C 9, 9.)) where L (t, s,q'). is the Lagrangian of the system constructed taking expressions 
(3.2) into account, has a coarse maximum, then we have for this point, for sufficiently small 
u, an asymptotically stable quasi-equilibrium of the system. 

The minimax criterion of stability was proved for canonical systems /36, 37/ using the 
asymptotic method. Here we shall obtain this criterion using Malkin's theorem, quoted in 
Sect.2.2. 

After substituting expressions (3.2) into the expressions for the kinetic and potential 
energy (3.1)‘ we obtain 

(3.3) 

b TBT k=j~a%nj(~~O)uj,kiYk 

exp (ivt(ti)t) 

Expression (3.3) was written under the condition that 
'j, k is independent of the 

variables (i*>. . -1 a and the parameter u. the structure 
of the Lagrangian (3.3) is retained, 

In he case when uj, h' = ujS k (qJt....,q,,, a) 
only the expressions for G,~,~ and R change, and, as we 

shall see below, this does not affect the final result. 
We note that in the present paper the kinematic excitation of oscillations means the 

excitation of the system under which the law of oscillation of some of the generalized coor- 
dinates can be assumed to be given. In 136, 371 the oscillations are introduced in a somewhat 
different manner, although the expression for Lagrange's function has a form analogous to 
(3.3). We should also not that there are no non-potential forces in the system discussed in 
136, 37/, and the discussion concerns the formal stability of the quasi-equilibrium positions. 
The introduction of dissipative forces enables us to formulate the criterion of asymptotic 
stability of the system. 

Making the change of variables 
*, = Zj, qj' = pyj (j c 1, ,, II) 
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we can write the equations of motion of the system in the form 

zj' = Xj (29 Y, 7) + PFj (ZT Y, 7, {l) 

111’ = Xj+n (zv Y, T) + PFj+n (x9 YV T, p) (i = 1, ., n) 

Here 
Xj = 0, Fj = Yj 

(3.4) 

(3.5) 

H, are known functions of rapid time z = mt and the generalized coordinates h, . . ..l.,, (H,) = 

0; lZ,j-l are the elements of the matrix, inverse to the matrix of the coefficients a,j, and the 
prime denotes differentiation with respect to z. 

The generating system corresponding to Eqs.(3.4) 

(3.6) 

(j = 1, . . ., n) 

has a family of almost periodic solutions depending on 2n arbitrary parameters Ql? . ..t On. YIP 
. . . . Yn 

zj* = Qj, . Yj” = - i a$ (Q) Zb,,k (Q) erp (iv,4 + yj (3.7) 
r=1 k 

(j = 1, . . ., n) 

The following equations in variations correspond to the generating system (3.6) and the 
generating solution (3.7): 

(3.8) 

The periodic solutions of the system linked with (3.8) and satisfying conditions (2.21), 
have the form 

Taking into account 

(3.9) 

(3.10) 
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and relations (3.5) we obtain, after substituting the solution (3.9) into Eq.f2.19), 

Here 

(3.11) 

Therefore, the parameters of the generating solution satisfy the conditions 

yj = 0, aD/dQj = 0 (j = 1, . . ,, n) 

Let as assume that Qz= Q,*, . . . . Qn= Q,," is a stationary point of the potential function 
D, and let us consider the conditions of stability of almost periodic solution of the system 
corresponding to the generating solution with parameters y1= O,QJ= 91” (I = t,..., n). 

The determinant on the left-hand side of Eq.(2.20) can be transformed to the form 

A (1) = 0 (3.12) 

Here is a characteristic solution which finds use in investigating the stability of the 
positions of equilibrium of the system 

(3.13) 

(r = 1,. . ., n) 

It can be confirmed /36, 37~' that expression (3.11) for the potential function represents, 
apart from a quantity of the order of u, an averaged minimum over the variables Q;‘, . . ..Q.,‘ of 
the Lagrangian (3.3) taken with the opposite sign. 

If system (3.13) is free of frictional forces, then, using Lagrange's theorem of the 
stability of the positions of equilibrium of conservative systems we can conclude that the 
points of coarse minimum of the function D have corresponding stable positions of equilibrium. 
After incorporating the dissipative forces with full dissipation, the positions of equilibrium 
become asymptotically stable /20/ and all roots of Eq.(3.12) will have negative real parts. 
Thus the conditions of coarse minimum at the point Q,- Q1', . . ..Q.,= Qno of the potential func- 
tion D = --(mine L(t,Q,Q’)) represent the sufficient conditions for the existence of an asymp- 
totically stable, almost periodic solution of the initial system becoming, at p=O, the 
generating solution (3.7) where ~j= 0, Or = Qj"(i = 1, . . ., IL), and this completes the proof. 

We note that if the coordinates 4. . . .t % are periodic in t with period T-O(p) and 
have continuous second-order derivatives in t, then the conditions following from the minimax 
criterion are also necessary in the sense that when the function D has no minimum at the point 
QI = QI', . .., On- Qn*, and under the condition that Eq.(3.12) has no zero roots, the corresponding 
solution of the initial system is unstable. 

We shall also note that the minimax criterion of stability can also be obtained using the 
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method of direct separation of motions /IQ, ll/ which enables us to represent the equation 
for the slow cOmponents Ql, . L .) Qn in the form (3.13). Here the rapid camponents have the 
form @j {j r= 1, . . ., n) where $3 are found Erom relation (3.10). 

4, @iStems uitk &.jMmic -$XrC~-&r~&Pz of osc$XZ&~sns. We shall assume that the motion Of 
the system is described by theequations 

(4.1) 

where I’I (n, EL) is the potential energy of the system, ti is a small parameter, the matrix Of 
inertial coefficients arj(q) is assumed to be positive definite, and the last sum on the left- 
hand side Of Eq.(4.1) represents viscous frictional farces with full dissipation. 

Let us assume that the following relations hold: 

(n = 1, *. ., la; r = 1, . , ,1 nf 

The following theorem h0ld.s under the conditions formulated above: if at some point qlp 
qi”;“, . - .* qzi - qn” the function 

D=nl&,+n, 6% 

(4.4) 

has a coarse minimum, then an asymptotically stable quasi-equilibrium of system {4.lf will 

correspond to this point for sufficiently small values of p. 

Here ajm-l are the elements of the matrix that is inverse trr the matrix of the coef- 
ficients ajnrq 

Let us nOw prove the extremal criterion of stability using Malkin's theorem quated in 
Sect.2.2. 

Let us put pj-y,~'=gy~ fa prime denotes differontiatiOn with respect to z =?a Cd), am3 

transfctrm Eq.f4.1) to the farm i3.$5- We Obtain 

Sj"O, Fj=yf 

Then we can write Egs. (2.19) for determining the parameters Q1,...,QRr 4tr, ..-, y,, of the 
generating solution of the systen as follows: 
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(4.7) 

where Wr are the so-called vibrational fores. 
Let Q1 m Qla, . . . . Qn = Qs* be a solution of the system 

~~/~jl~~~~~~(Q~=O (i-1, . . . . n) 

If at the same time the algebraic equation 

f4.S) 

(6.9f 

has no roots with real parts equal to zero, then for sufficiently small u the initial system 
(3.4) will have an almost periodic solution becoming, when p-0, a generating solution with 

parameters ~j == O,Qj- Qro(j = 1, _ . ~, + If all roots of Eq.(4.%f have negative real parts, then 
the almost periodic solution in question of system (3.4) will be asymptotically stable. 

In the general case, the oscillatory forces i4.6) may have no potential. However, if 
conditions f4.2) hold, then the "potential energy of the oscillatory forces" (4.6) will 
exist and expression (4.4) will hold for it. We shall further assume that the potential 
function (4.3) has a coarse minimum at the point Q1qQlar ".., Q,- Q%. Then Q1= Q,", . . ..Qn= QR 
will be a solution of system (4.8) and, moreover, all roots of equation (4.9) will have 
negative real parts. Therefore, in order for an asymptotically stable position of 
quasi-equilibrium of theinitial system to correspond to some point Qj =Q~',...,Qn=QnO under 
the conditions (4.21, it is sufficient that this point be the part of the coarse minimum of 
the potential function (4.3). 

We note that the expression for a potential function analogous to f4.3fwas found in /24,f 
in the coarse of solving the problem of the behaviour of a particle in a one-dimensional, 
rapidly oscillating field. However, the proposed generalization of the formula to the case 
of systems with many degrees of freedom holds only when the additional conditions (4.21, 
which ensure that a potential of vibrational forces exists, are satisfied. These conditions 
are essential, since they require that equations for the amplitudes of harmonic components of 
the field must bold. This circumstance was noted in /42f. The papers IIS, 29/ were 
published practically simultaneously with the book /'24/, and their authors obtained an 
expression for the potential function in the problem of the motion of a charged particle in a 
three-dimensional, rapidly oscillating electromagnetic field. 

Vorovich /l%/ discovered the existence of a potential function, i.e. of the "potential 
energy of the amplitudes of steady oscillations" in the course of solving the problem of the 
oscillations of a circular plate under the action of a random load, using asymptotic methods. 

If in Eqs.(Q.l) we replace the finite sums on the right-hand sides by some functions 
fr (9, n, 6, periodic in t, with period T-- O(@. then, provided that Eq.(4.9) has no zero roots, 
the criterion in question will also yield the necessary conditions for the asymptotic stability 
of the corresponding quasi-equilibria of the initial system. 

We note that systems in which the oscillations are excited dynamically, can also be 
studied using the method of direct separation of motions. 

5. ~~~~~U~~~ Of ex&iB?!at CtitQPia Of strtbitity. 5.1. &XW??z§ $#For GiY? te&ency of 
certain cZasses of weakey coupZed dynamic objects to achieve s~~~ro~~~u~~o~. Using the inte- 
gral criterion of stability we have succeeded in showing the tendency to reach 
synchronization, i.e. the presence of at least one, stable in one or other sense, synchronous 
motion, for a number of important classes of dynamic objects under fairly general assumptions 
/lO/. Such objects include objects with almost uniform rotations and almost converative 
objects. The scheme of proof is fairly simple: the functions A= (I~j),n(~)= <[t(r)]t and AUU =: 

tlt("~j, appearing in expressions 12.41, (2.6), t2.71, (2.91 and I2.11) and representing the 
"fundamental part" of the potential function I>, are periadic in rztr.._,c&,i~ far PI - c&g, . . .* 
‘*K.-I - =h- in the case of selfsimilar systems). Therefore, the function D will have minima 

under very general assumptions. In other words, we have succeeded in showing that in the 
space of parameters a19 .*.,ag or a, -a!;, . ., =k-l- %A "potential wells" invariably exist cor- 
responding to stable synchronous motions. In particular, this method is used to obtain a 
general explanation of the more than accidental form of the appearance of the synchronisms 
(resonances) in the orbital motions of objects in the salar system (see also Sect.5.5.]. 

5.2. &?~~~CC&Q?‘I tQ I%? &Y&n Of ?Ze?d OsC&?&Z~OP+Zj m&&eS and ~eCh?T,O~og&?.3. The integral 
criterion of the stability of synchronous motions represents a working tool for investigating 
the basic schemes of a new class of vibrational machines and constructions, i.e. of machines 
with selfsynchronizing mechanical oscillation generators. The most important schemes were 
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discussed in /9, lo/, and in /17/. Applications of the minimax criterion and the study of a 
number of systems with kinematic excitation of oscillations were discussed in /37/ and /14/. 

5.3. GeneraZization of the cLassicaL principle of seZfba2ancing. As long ago as 1884 
the Swedish engineer Lava1 discovered that an unbalanced disc mounted on a flexible shaft 
undergoes selfcentring in the supercritical range of rotation frequencies, i.e. at frequencies, 
i.e. at frequencies o appreciably exceeding the frequency of free oscillations of the rotor 
p; its centre of gravity is situated practically on the axis of rotation, and this leads to a 
considerable reduction in the non-equilibrated forces transmitted to the shaft bearings. The 
effect is successfully utilized in machines. 

The integral criterion of stability given in Sect.2.1. yields a generalization of the 
principle of selfbalancing to the multirotor systems, and the generalization is as follows /lo/. 
When the mechanical oscillation generators (unbalanced rotors driven by asynchronous-type 
engines) have the same partial angular velocities and are positioned on a rigid body 
connected linearly and elastically to a fixed foundation, and provided the motion occurs at a 
sufficient distance from resonance, in which case the forces resisting the oscillations can 
be neglected, the quantity B in expression (2.4) is equal to zero and so is, in this case, 
the expression J\(n) (see /9, lO/ for more detail). As a result, according to (2.7) the 
potential function is 

D = D (aI, ., a,,) = A(‘) 3 <[?-(‘)I - [IPI, (5.1) 

where IT(‘)1 and [II(~)] are the kinetic and potential energy of the body, respectively, calcu- 
lated on the assumption that the rotors of the generators rotate uniformly in accordance with 
the rule (p. = q.'= o,(ot + a,), and the body executes steady oscillations under the action of 
forces generated by the generators during such rotation. In the far supercritical range of 
frequencies, o>hi(hi are the frequencies of free oscillations of the body) Z'(I) +. II(') , and 
we then have 

D = D (cc1 CQ) = <T(‘)) > 7 (5.2) 

Thus for the integral criterion of stability it follows that in the far supercritical 
range of frequencies the stable phasing of the rotors a,*, . . ..ui(* is the phasing in which 
their imbalances will compensate each other (in the sense of minimizing the value of <T(">). 
In particular, if a phasing is possible under which T(')=O, then it will be precisely this 
phasing that will be stable, i.e. the solid will be at rest. Such a phasing is called 
compensatory. 

In the case of rotors with different partial velocities, when B#O, the law formulated 
above is retained in the form of a certain tendency. 

A more detailed investigation of expressions (2.4) and (5.1) and an analysis of the 
solutions of a number of problems, enable us to arrive at the following position, which can 
also be regarded as a generalized principle of selfbalancing of rotors. 

The separate rotors, or several synchronously rotating rotors placed in a single, linear 
oscillating system and causing it to vibrate due to their lack of balance or by other factors 
reveal, in the range of rotational frequencies lying above the highest frequency of free 
oscillations of the system, a tendency to a weakening of the oscillations, and in the range 
of rotation frequencies lying below the lowest frequency of free oscillations, a tendency to 
increase the oscillations of the system, while the intermediate range of rotation frequencies 
splits into intervals in which we have an alternative tendency to selfbalancing, and to an 
increase in the oscillations. 

Confirmation of the above, and examples of its use in producing selfbalancing devices, 
single foundations for a number of unbalanced machines, and other constructions, are given in 
/9/, where the corresponding investigations are also reviewed. 

5.4. Applications to the theory of eZectromeckanica2 systems. The integral criteria of 
stability formulated in Sect.2.3. can be used to study the oscillations of electromechanical 
systems /39, 40/. Here we shall concern ourselves with the systems of bodies including m 
linear conductors to which external EMF's are applied, and the resistances of the conductors 
are small compared with the inductive resistance, while the external EMF's are given periodic 
functions of time with small constant coefficients. We also assume tht the energy of the 
electric field can be neglected, the magnetic field can be regarded as quasistationary 
(here the charges q?(r- 1, . . . . m), represent quasicycle coordinates) and the mechanical general- 
ized coordinates 4,+r, . . ., hn) as the position coordinates. Under these assumptions and the 
condition that the non-potential mechanical forces satisfy relations (2.35), the potential 
function (2.36) (where a, are the constant components of the magnetic fluxes) will be equal 
to the value of magnetic field energy averaged over a period, from which the value of the 
mechanical kinetic potential and the energy of magnetization averaged over a period have been 
subtracted. 

5.5. Applications to the problem of resonances (synckronisms) in the motion of ceZestia2 
objects. The problems of resonances (synchronisms), which are amongst the basic problems of 
many bodies, engaged the attention of a considerable number of classical, as well as 
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contemporary workers. Here we shall focus our attention preferably on the properties relevant 
to the problem and ensuing from the results given in Sect.2. As we said before, the results 
can also be obtained using the classical Poincare /35/ and Lyapunov /26/ methods. 

In 1973 a so-called principle of least interaction was formulated purelyheuristicallyin 

/44/. A satellite or a planetary system of N bodies moving under the action of 
gravitational forces of attraction will remain, for most of the time, in a configuration for 
which the time-averaged value of the force function of the perturbations will be a minimum, 
and this configuration will be resonant, i.e. we shall have a clearly defined 
commensurability between the averaged motions (conversion frequencies). The force function 
of the perturbations is given by the relation 

where mi7 mj are the masses of the satellites, Pij are the distances between them, and f 
is the constant of attraction. The fact that it is precisely the resonance configuration that 
corresponds to the absolute minimum of interaction, was confirmed by the model computations 
in /44/. 

The assertion of /44/ is closely related to the classical result of POinCar6 /35/ from 

which it follows that for every stationary point (relative to the initial phases of the 
motions of the planets) of the averaged value of the function U,, calculated from the 
unperturbed motion, there is a corresponding synchronous (resonant) average motion of the 
planets. 

It was shown in /lO, 12/ that, from the results of /32, 34/, which generalize the 
integral criterion of stability to embrace quasiconservative systems, it follows that the 
minima mentioned above of the averaged interaction potential have corresponding synchronous 
motions stable with respect to initial phases. In fact, in the case in question the objects 
appear to be mildly asynchronous and the expression for the potential function (2.111 has the 
form 

D = <[UpI) - dT(‘)l> + B (5.3) 

where T(z) is the kinetic energy of the central body and square brackets indicate that the 
corresponding quantities are calculated for the unperturbed (Keplerian) orbits. 

If we assume that the mass of the central body is much larger than the masses %, . .., qJ 
and the dissipative forces are small, then 

D = dU,l> (5.4) 
We stress that in accordance with note 2" of Sect.2.2 we are discussing here the stability 

of the motions with respect to the differences in the phases of rotations of the bodies, which 
can be represented, in this case, by, for example,the corresponding arguments of the latitude. 

For the majority of the bodies of the solar system the unperturbed orbits have small 
eccentricities e, and small mutual inclinations JSJ. Analysis of the distribution of the 
function D - t[U,], in powers of e, and y8 = sin2 (J,J/Z) obtained by Veretinskii shows, that 
taking into account the free term of this expansion only, corresponding to circular orbits 
lying ina single plane, leads to the interaction.of the bodies which ensure the stability 
only of resonances of the type l:l, i.e. of circulations with the same average motions; taking 
into account the linear terms leads to resonances of the type Z:(Z*i) and z:(zk2), and the 
use of the quadratic terms leads also to resonances of the type z : (Z& 3) and z : (I * 4); 
naturally, subsequent interactions are, generally speaking, weaker than the preceding ones. 
It follows therefore that we can offer the following classification of the orbital resonances 
according to their "relative strength" (for fixed 1): we shall assign to zero order resonances 
of the type 1 : 1, to the first order those of the type z:(Z*l) and 1 : (1 k Z), to the second 
order those of the type 1 : (1 * 3) and z:(ZJr4), etc. (See also the classification of periodic 
motions according to type in Poincare /35/l. 

Taking all this into account it is not surprising that the overwhelming majority of 
"intense" resonances in the solar system are of an order not higher than the second. We can 
call such resonances simple resonances. It is also natural to assume that the known 
hypothesis of Molchanov on the complete resonance of the orbital motions of the large planets 
of the solar system /lO, 12/ is indeed valid for simple resonances. In this connection we 
note that the extremal property of the resonant motions makes possible a distinctive "check" 
of the hypotheses on the closeness of the motions of the planetary or satellite systems to 
resonant. A computer can be used to calculate the value of the function D for the motion in 
question, and compare it with the corresponding minimal values of this function. It is also 
of interest to determine the directionof theevolutionary change of the functi0n.D. 

As we have already said in Sect.5.1, the results given yield a general theoretical ex- 
planation for the fact of the relatively frequent encounter with resonances in the orbital 
motions of celestial bodies, i.e. with the tendency to establish synchronism. One of the 
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achievements of this concept is the hypothesis on the resonant character of the rings of 
Uranus, according to which the positions of these rings are determined by the resonances of 
the type 1 : 2, 2 : 3 and 3 : 4, with so-far undiscovered satellites. Such satellites were 
indeed discovered later by Voyager-2 /20/. 

So far, we have been discussing only resonances in the motions of celestial objects, 
since the integral criterion of stability based on formula (2.11) cannot be used in problems 
dealing with orbital-rotational resonances, since the character of anisochronism in the 
motion of a body in an orbit and in rotational motions of the body about its centre of mass 
is different (for the first motion we have o=--1, and for the second motion a-+1). At 
the same time the character of the anisochronism does not figure in the criterion of 
stability proposed in /l, 3/ (see Sect.2.2). The results of a numerical experiment given in 
/l/ show good agreement with the criterion. 

Different, non-classical representations, were used as the basis for studying the 
problem of stability, resonant character and extremal properties in /41/. 

5.6. The probZem of optimizing the bipeda walk. Here it was shown that synchronous 
(resonant) modes have corresponding minima of the functional characterizing the energy losses 
in the system*. (*Beletskii V.V. and Golubitskaya M.D. Stabilization and resonance phenomena 
in the model problem of bipedal walk. Preprint 14, Moscow, In-t prikladnoi matematiki im. 
M.V. Keldysha, 1987.) The use of this approach gave a number of essential periodic modes of 
a walk. 

The authors thank V.V. Rumyantsev and his colleagues for useful discussions and sugges- 
tions, and V.V. Kozlov for bringing to our attention the work of Poincare presented in Sect.1 
and for making a number of other suggestions. 
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